-
Notifications
You must be signed in to change notification settings - Fork 0
Open
Description
In the call_ function of the affine coupling layer
`
def call_(self, X):
in_shape = tf.shape(X)
n, h, w, c = X.shape
for layer in self.layers:
X = layer.call(X) # residual
X = tf.reshape(X, (-1, h, w, c*2))
s = X[:, :, w//2:, :]
t = X[:, :, :w//2, :]
s = tf.reshape(s, in_shape)
t = tf.reshape(t, in_shape)
return s, t
Shouldn't s and t be X[:,:,:,c:] and X[:,:,:,:c] respectively?
My code-
` data = np.random.normal(0,1,(1,6,6,4)).astype('f')
a = FlowSequential() #This is similar to a sequential model
b = AffineCoupling(part=0)
b.add(Conv2D(64, kernel_size=(3,3), activation="relu"))
b.add(Flatten())
b.add(Dense(50,activation='relu'))
b.add(Dense(6*6*4,activation='relu'))
a.add(Squeeze())
a.add(b)
a.call(data)
`
Gives the error
in call_ s = tf.reshape(s, in_shape) tensorflow.python.framework.errors_impl.InvalidArgumentError: Input to reshape is a tensor with 96 values, but the requested shape has 72
Metadata
Metadata
Assignees
Labels
No labels