Skip to content

Runtime error on mac #8

@fedorov

Description

@fedorov

I tried the extension with yesterday's nightly, and got the following error.

Image

Full log:

[95m**************************************************************[0m
[95m**                      CITATION NOTICE                     **[0m
[95m** -------------------------------------------------------- **[0m
[95m** [0m                                                        [95m **[0m
[95m** [0mYou are running an MHub model. Cite the MHub platform in[95m **[0m
[95m** [0m your work. Visit https://mhub.ai/cite for more.        [95m **[0m
[95m** [0m                                                        [95m **[0m
[95m** [0mYou are running a model. Please cite the authors of the [95m **[0m
[95m** [0mmodel and the MHub model url in your work:              [95m **[0m
[95m** [0m The model card and run instructions for this model are [95m **[0m
[95m** [0m publicly available on the MHub platform under https://m/[95m **[0m
[95m** [0m hub.ai/models/totalsegmentator.                        [95m **[0m
[95m** [0m                                                        [95m **[0m
[95m** [0mThank you for using MHub!                               [95m **[0m
[95m** [0m                                                        [95m **[0m
[95m**************************************************************[0m

[95m**************************************************************[0m
[95m**                      CITATION NOTICE                     **[0m
[95m** -------------------------------------------------------- **[0m
[95m** [0m                                                        [95m **[0m
[95m** [0mYou are running an MHub model. Cite the MHub platform in[95m **[0m
[95m** [0m your work. Visit https://mhub.ai/cite for more.        [95m **[0m
[95m** [0m                                                        [95m **[0m
[95m** [0mYou are running a model. Please cite the authors of the [95m **[0m
[95m** [0mmodel and the MHub model url in your work:              [95m **[0m
[95m** [0m The model card and run instructions for this model are [95m **[0m
[95m** [0m publicly available on the MHub platform under https://m/[95m **[0m
[95m** [0m hub.ai/models/totalsegmentator.                        [95m **[0m
[95m** [0m                                                        [95m **[0m
[95m** [0mThank you for using MHub!                               [95m **[0m
[95m** [0m                                                        [95m **[0m
[95m**************************************************************[0m


--------------------------
Start DicomImporter
> source input dir:  input_data  -->  /app/data/input_data
> import sort  dir:  sorted_data  -->  /app/data/sorted_data

sorting dicom data
> input dir:   /app/data/input_data
> output dir:  /app/data/sorted_data
> schema:      %SeriesInstanceUID/dicom/%SOPInstanceUID.dcm
> creating output folder:  /app/data/sorted_data
>> run:  dicomsort -k -u /app/data/input_data /app/data/sorted_data/%SeriesInstanceUID/dicom/%SOPInstanceUID.dcm

0%|          | 0/162 [00:00<?, ?it/s]
5%|▍         | 8/162 [00:00<00:02, 73.93it/s]
10%|▉         | 16/162 [00:00<00:01, 74.34it/s]
15%|█▍        | 24/162 [00:00<00:01, 73.36it/s]
20%|██        | 33/162 [00:00<00:01, 75.16it/s]
25%|██▌       | 41/162 [00:00<00:01, 75.68it/s]
31%|███       | 50/162 [00:00<00:01, 78.64it/s]
36%|███▋      | 59/162 [00:00<00:01, 79.89it/s]
42%|████▏     | 68/162 [00:00<00:01, 80.41it/s]
48%|████▊     | 77/162 [00:00<00:01, 81.73it/s]
53%|█████▎    | 86/162 [00:01<00:00, 79.26it/s]
59%|█████▊    | 95/162 [00:01<00:00, 80.38it/s]
65%|██████▍   | 105/162 [00:01<00:00, 83.90it/s]
71%|███████   | 115/162 [00:01<00:00, 87.50it/s]
77%|███████▋  | 125/162 [00:01<00:00, 90.63it/s]
83%|████████▎ | 135/162 [00:01<00:00, 92.32it/s]
90%|████████▉ | 145/162 [00:01<00:00, 93.87it/s]
96%|█████████▌| 155/162 [00:01<00:00, 94.60it/s]
100%|██████████| 162/162 [00:01<00:00, 85.09it/s]
Files sorted
> importing sorted instance (1/1):  1.2.840.113654.2.55.305538394446738410906709753576946604022

> related instances:  0
Done in 3.65486 seconds.

--------------------------
Start NiftiConverter

Running 'plastimatch convert' with the specified arguments:
  --input /app/data/sorted_data/1.2.840.113654.2.55.305538394446738410906709753576946604022/dicom
  --output-img /app/data/sorted_data/1.2.840.113654.2.55.305538394446738410906709753576946604022/nifti/dicom.nii.gz
... Done.
Done in 26.416 seconds.

--------------------------
Start TotalSegmentatorMLRunner
Generating multi-label output ('--ml')
Running TotalSegmentator in fast mode ('--fast', 3mm)
>> run:  TotalSegmentator -i /app/data/sorted_data/1.2.840.113654.2.55.305538394446738410906709753576946604022/nifti/dicom.nii.gz -o /app/data/sorted_data/1.2.840.113654.2.55.305538394446738410906709753576946604022/nifti/segmentations.nii.gz --ml --fast

Docker image details.

Image

Image

Of note, Docker is rather old at v4.18.0. I am going to upgrade it now and retry.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions