Skip to content

Redis Cluster & Valkey Support #12

@fnLog0

Description

@fnLog0

📋 Overview

Add comprehensive support for Redis Cluster and Valkey to enable high-availability, horizontal scaling, and Redis-compatible alternatives in DBX.

🎯 Goals

  • Redis Cluster Support: Enable horizontal scaling with automatic sharding and failover
  • Valkey Support: Provide Redis-compatible alternative with enhanced performance
  • Backward Compatibility: Maintain existing single-node Redis functionality
  • Performance: Optimize for distributed operations and high throughput
  • Developer Experience: Seamless migration path and enhanced SDK support

🔍 Current State Analysis

Existing Architecture

  • Single Redis connection via redis-rs crate (v0.23)
  • Connection pooling with RedisPool
  • HTTP/WebSocket APIs that proxy to Redis
  • TypeScript SDK with native bindings
  • Basic configuration via DBX_DATABASE_URL

Limitations

  • No cluster-aware routing
  • Single point of failure
  • No horizontal scaling capability
  • Limited to single Redis instance
  • No support for Redis-compatible alternatives

🏗️ Proposed Architecture

1. Enhanced Connection Management

pub enum RedisConnectionType {
    Single(RedisPool),
    Cluster(RedisClusterPool),
    Valkey(RedisPool), // Valkey uses same protocol as Redis
}

pub struct RedisClusterPool {
    nodes: Vec<String>,
    cluster_client: Arc<redis::cluster::ClusterClient>,
    pool_size: u32,
    read_from_replicas: bool,
}

2. Configuration Extensions

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct Config {
    pub database_url: String,
    pub database_type: DatabaseType,
    pub cluster_config: Option<ClusterConfig>,
    pub host: String,
    pub port: u16,
    pub pool_size: u32,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ClusterConfig {
    pub nodes: Vec<String>,
    pub read_from_replicas: bool,
    pub max_retries: u32,
    pub retry_delay_ms: u64,
    pub enable_cross_slot_operations: bool,
}

3. Key Distribution Strategy

pub trait KeyDistributor {
    fn get_target_node(&self, key: &str) -> String;
    fn get_all_nodes(&self) -> Vec<String>;
    fn handle_key_redistribution(&self, key: &str) -> Result<()>;
}

pub struct ConsistentHashDistributor {
    ring: Vec<(u32, String)>, // hash -> node
    virtual_nodes: u32,
}

📋 Implementation Plan

Phase 1: Foundation (Week 1-2)

1.1 Configuration System Enhancement

  • Extend DatabaseType enum to include RedisCluster and Valkey
  • Add ClusterConfig struct for cluster-specific settings
  • Update environment variable parsing
  • Add configuration validation

Environment Variables:

# Single Redis (existing)
DBX_DATABASE_URL=redis://localhost:6379

# Redis Cluster
DBX_DATABASE_TYPE=redis-cluster
DBX_CLUSTER_NODES=node1:6379,node2:6379,node3:6379
DBX_CLUSTER_READ_FROM_REPLICAS=true
DBX_CLUSTER_MAX_RETRIES=3
DBX_CLUSTER_RETRY_DELAY_MS=100

# Valkey
DBX_DATABASE_TYPE=valkey
DBX_DATABASE_URL=valkey://localhost:6379

1.2 Connection Factory Implementation

  • Create ConnectionFactory trait and implementation
  • Implement connection creation for different database types
  • Add connection health checking
  • Implement connection pooling per node for clusters

1.3 Error Handling Framework

  • Define cluster-specific error types
  • Implement retry logic with exponential backoff
  • Add failover handling
  • Create error reporting and monitoring

Phase 2: Cluster Implementation (Week 3-4)

2.1 Cluster Client Wrapper

  • Implement RedisClusterPool struct
  • Add cluster node discovery and management
  • Implement connection pooling per cluster node
  • Add cluster topology monitoring

2.2 Key Routing Logic

  • Implement KeyDistributor trait
  • Create ConsistentHashDistributor for even key distribution
  • Add cross-slot operation handling
  • Implement key redistribution on cluster changes

2.3 Cluster Operations

  • Add cluster-specific admin operations
  • Implement cluster info and node management
  • Add cluster health monitoring
  • Implement cluster failover detection

Phase 3: API Layer Updates (Week 5-6)

3.1 Route Handler Updates

  • Update existing route handlers to be cluster-aware
  • Add cluster-specific endpoints under /cluster/ prefix
  • Implement cross-node operation handling
  • Add cluster metrics and monitoring endpoints

3.2 WebSocket Support

  • Extend WebSocket connections for cluster support
  • Implement multi-node WebSocket management
  • Add cluster-aware real-time operations
  • Handle WebSocket failover scenarios

3.3 Performance Optimization

  • Implement command pipelining across cluster nodes
  • Add connection pooling optimization
  • Implement smart routing to minimize cross-node operations
  • Add batch operation support for clusters

Phase 4: SDK Updates (Week 7-8)

4.1 TypeScript SDK Enhancements

  • Add DbxRedisClusterClient class
  • Implement cluster-aware operations
  • Add automatic retry and failover logic
  • Update type definitions for cluster operations

4.2 WebSocket SDK Updates

  • Extend WebSocket client for cluster support
  • Add multi-node WebSocket connections
  • Implement cluster-aware real-time features
  • Add connection failover handling

4.3 Documentation and Examples

  • Update SDK documentation for cluster operations
  • Add cluster migration guides
  • Create performance comparison examples
  • Add troubleshooting guides

�� Testing Strategy

Unit Tests

  • Connection factory tests
  • Key distribution algorithm tests
  • Cluster operation tests
  • Error handling and retry logic tests

Integration Tests

  • Redis Cluster setup with Docker Compose
  • Valkey instance testing
  • Failover scenario testing
  • Cross-node operation testing

Performance Tests

  • Load testing with cluster vs single-node
  • Latency comparison across different topologies
  • Throughput testing with various key distributions
  • Memory usage and connection pool efficiency tests

End-to-End Tests

  • Full cluster deployment testing
  • SDK integration testing
  • WebSocket cluster testing
  • Migration scenario testing

📊 Success Metrics

Performance Metrics

  • Latency: < 5ms increase for cluster operations vs single-node
  • Throughput: > 90% of single-node throughput in cluster mode
  • Availability: 99.9% uptime with automatic failover
  • Memory Usage: < 20% increase in memory footprint

Developer Experience Metrics

  • Migration Time: < 1 hour for existing applications
  • API Compatibility: 100% backward compatibility
  • Documentation Coverage: 100% of new features documented
  • Error Handling: Clear error messages for all failure scenarios

🔧 Technical Requirements

Dependencies

  • redis-rs cluster features enabled
  • tokio for async operations
  • serde for configuration serialization
  • tracing for distributed tracing

Infrastructure

  • Docker Compose for cluster testing
  • Kubernetes manifests for production deployment
  • Monitoring and alerting setup
  • Backup and recovery procedures

Security Considerations

  • TLS support for cluster communications
  • Authentication for cluster nodes
  • Network security for cross-node operations
  • Audit logging for cluster operations

🚨 Risk Assessment

High Risk

  • Data Consistency: Cross-slot operations in cluster mode
  • Performance Degradation: Network overhead in distributed setup
  • Complexity: Increased operational complexity

Medium Risk

  • Migration Complexity: Existing application migration
  • Monitoring: Distributed system monitoring challenges
  • Debugging: Harder to debug issues in cluster mode

Low Risk

  • Backward Compatibility: Well-defined migration path
  • Documentation: Comprehensive documentation available
  • Testing: Extensive testing strategy in place

📚 Documentation Requirements

Technical Documentation

  • Architecture design document
  • API reference for cluster operations
  • Configuration guide
  • Performance tuning guide

User Documentation

  • Migration guide from single-node to cluster
  • SDK usage examples
  • Troubleshooting guide
  • Best practices document

Operational Documentation

  • Deployment guide
  • Monitoring and alerting setup
  • Backup and recovery procedures
  • Disaster recovery plan

🎯 Acceptance Criteria

Functional Requirements

  • Support for Redis Cluster with automatic sharding
  • Support for Valkey with Redis compatibility
  • Automatic failover and recovery
  • Cross-slot operation handling
  • Backward compatibility with existing APIs

Non-Functional Requirements

  • Performance within 5% of single-node Redis
  • 99.9% availability with automatic failover
  • Comprehensive error handling and retry logic
  • Full SDK support for cluster operations
  • Complete documentation and examples

Operational Requirements

  • Monitoring and alerting for cluster health
  • Backup and recovery procedures
  • Deployment automation
  • Performance benchmarking tools

🔄 Migration Path

Phase 1: Preparation

  1. Update configuration to support cluster mode
  2. Add cluster-specific environment variables
  3. Implement connection factory
  4. Add basic cluster operations

Phase 2: Implementation

  1. Implement cluster client wrapper
  2. Add key distribution logic
  3. Update API layer for cluster support
  4. Extend SDK with cluster capabilities

Phase 3: Testing

  1. Comprehensive testing with Redis Cluster
  2. Performance benchmarking
  3. Failover scenario testing
  4. SDK integration testing

Phase 4: Deployment

  1. Production deployment with monitoring
  2. Gradual migration of existing applications
  3. Performance monitoring and optimization
  4. Documentation and training

👥 Team Requirements

Core Team

  • Backend Developer: Rust implementation and cluster logic
  • Frontend Developer: SDK updates and documentation
  • DevOps Engineer: Infrastructure and deployment
  • QA Engineer: Testing and validation

Skills Required

  • Rust programming (advanced)
  • Redis Cluster administration
  • Distributed systems knowledge
  • Performance optimization
  • Monitoring and observability

�� Timeline

  • Week 1-2: Foundation and configuration
  • Week 3-4: Cluster implementation
  • Week 5-6: API layer updates
  • Week 7-8: SDK updates and testing
  • Week 9-10: Documentation and deployment
  • Week 11-12: Performance optimization and monitoring

🏷️ Labels

  • enhancement
  • cluster
  • valkey
  • scalability
  • high-availability
  • breaking-change
  • documentation
  • testing

🔗 Related Issues

  • #XXX - Redis List Operations
  • #XXX - Redis Sorted Set Operations
  • #XXX - Performance Optimization
  • #XXX - Monitoring and Observability

💬 Discussion Points

  1. Key Distribution Strategy: Should we use consistent hashing or Redis's built-in hash slots?
  2. Cross-Slot Operations: How should we handle operations that span multiple hash slots?
  3. Failover Strategy: What's the optimal failover strategy for different use cases?
  4. Performance Trade-offs: How do we balance consistency vs performance in cluster mode?
  5. Monitoring Strategy: What metrics are most important for cluster health monitoring?

Priority: High
Effort: Large (8-12 weeks)
Impact: High (enables horizontal scaling and high availability)

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions