NewComputeBench is a project to develop a benchmark suite for the new compute paradigm (Spiking neural networks, Optical computation, In-Memory computation, etc). The project is divided into three main components:
- Model Training
- Model Behavior-Level Simulation
- Hardware-Performance Simulation
We aim to support the following features:
- Pretraining;
- Model Architecture:
ARIA_LLM - Transformer building block:
GPT,Block,CausalSelfAttention, etc - Datasets:
src/aria_models/data
- Model Architecture:
- Generation (inference)
- Generation function:
LLM.generate(...)
- Generation function:
🚧 TODO: Supervised-fine-tuning🚧 TODO: LoRA fine-tuning;🚧 TODO: Evaluation
-
Model config
ARIA_LLM["ARIA-LLM-135M"] -
Pretraining data:
TinyStores -
Pretraining scripts: aria-llm.py and justfile
# the justfile wraps the following commands # for preprocess data and pretrain aria-llama-135m with 3B tokens just aria-135m
🚧 TODOARIA-LLM-1B (We aim to scale the ARIA-LLM-135M model to 1B parameters and pretrain with 3T tokens)- Model config
- Pretraining data: SlimPajama
- Pretraining scripts
- Supervised Fine-tuning data SmolTalk
- Supervised Fine-tuning scripts
🚧 TODO: 8B (We aim to fine-tune a LLM around 7B parameters using LoRA)- LoRA fine-tuning data
- LoRA fine-tuning scripts
🚧 TODO
🚧 TODO