Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
pretext == 2.24.0
pretext[prefigure] == 2.36.0
CodeChat-Server == 0.2.25
pelican == 4.11.0
markdown == 3.7.0
Expand Down
59 changes: 13 additions & 46 deletions source/precalculus/source/08-TE/01.ptx
Original file line number Diff line number Diff line change
Expand Up @@ -20,16 +20,9 @@
For example, consider a point <m>P</m> on the unit circle, with coordinates <m>(x,y)</m>. If we draw a right triangle (as shown in the figure below), the Pythagorean Theorem says that <m>x^2+y^2=1</m>.
<figure xml:id="Deriving-Pythagorean-Identity">
<image>
<sageplot>
p=circle ((0,0), 1)
p += line([(0,0),(.707,.707), (.707,0), (0,0)],thickness=3,color="black",ticks=[SR(1),SR(1)])
p += text("$x$", (0.3,-0.1),color="black", fontsize=14)
p += text("$y$", (.8, 0.4), color="black",fontsize=14)
p += text("$P=(x,y)$", (.9, .8), color="black",fontsize=14)
p += text("$1$", (.3, .4), color="black",fontsize=14)
p.axes(True)
p
</sageplot>
<prefigure xmlns="https://prefigure.org" label="prefigure-graph-te1-unit-circle">
<xi:include href="prefigure/TE1-unit-circle.xml"/>
</prefigure>
</image>
</figure>
But, remember, that the <m>x</m>-coordinate of the point corresponds to <m>\cos\theta</m> and the <m>y</m>-coordinate corresponds to <m>\sin\theta</m>. Thus, we get: <me>\sin^2\theta + \cos^2\theta = 1</me>. Pythagorean Identities are used in solving many trigonometric problems where one trigonometric ratio is given and we are expected to find the other trigonometric ratios. The next two activities will lead us to find the other two Pythagorean Identities.
Expand Down Expand Up @@ -290,42 +283,16 @@ p
</p>
<figure>
<sidebyside widths="50% 50%">
<image>
<sageplot>
beta=pi/8
alpha=3*pi/4
q=plot([],aspect_ratio=1,ticks=[[],[]])
q+=circle((0,0),1,color="#ddd")
q+=line([(0,0),(cos(beta),sin(beta))],color="blue",thickness=2)
q+=arc((0,0),0.2,sector=(0,beta),color="black")
q+=text(r"$\beta$", (0.3*cos(beta/2),0.3*sin(beta/2)),color="black",fontsize=14)
q+=line([(0,0),(cos(alpha),sin(alpha))],color="blue",thickness=2)
q+=arc((0,0),0.15,sector=(0,alpha),color="black")
q+=text(r"$\alpha$", (0.2*cos(alpha/2),0.2*sin(alpha/2)),color="black",fontsize=14)
q+=line([(cos(beta),sin(beta)),(cos(alpha),sin(alpha))],color="blue",thickness=2)
q+=text(r"$P$",(1.1*cos(alpha),1.1*sin(alpha)),color="black",fontsize=14)
q+=text(r"$Q$",(1.1*cos(beta),1.1*sin(beta)),color="black",fontsize=14)
q+=text(r"$O$",(-0.1,-0.1),color="black",fontsize=14)
q
</sageplot>
</image>
<image>
<sageplot>
beta=pi/8
alpha=3*pi/4
p=plot([],aspect_ratio=1,ticks=[[],[]])
p+=circle((0,0),1,color="#ddd")
p+=line([(0,0),(cos(0),sin(0))],color="blue",thickness=2)
p+=line([(0,0),(cos(alpha-beta),sin(alpha-beta))],color="blue",thickness=2)
p+=arc((0,0),0.1,sector=(0,alpha-beta),color="black")
p+=text(r"$\alpha-\beta$", (0.15*cos((alpha-beta)/2)+0.1,0.15*sin((alpha-beta)/2)),color="black",fontsize=14)
p+=line([(cos(alpha-beta),sin(alpha-beta)),(cos(0),sin(0))],color="blue",thickness=2)
p+=text(r"$A$",(1.1*cos(alpha-beta),1.1*sin(alpha-beta)),color="black",fontsize=14)
p+=text(r"$B$",(1.1*cos(0),1.1*sin(0)+0.05),color="black",fontsize=14)
p+=text(r"$O$",(-0.1,-0.1),color="black",fontsize=14)
p
</sageplot>
</image>
<image>
<prefigure xmlns="https://prefigure.org" label="prefigure-graph-TE1-difference1">
<xi:include href="prefigure/TE1-difference-1.xml"/>
</prefigure>
</image>
<image>
<prefigure xmlns="https://prefigure.org" label="prefigure-graph-TE1-difference2">
<xi:include href="prefigure/TE1-difference-2.xml"/>
</prefigure>
</image>
</sidebyside>
<caption>Triangle <m>POQ</m> and its rotation clockwise by <m>\beta</m>, Triangle <m>AOB</m> </caption>
</figure>
Expand Down
Loading