Skip to content

datagouv/api-tabular

Repository files navigation

Tabular API

Tabular API

CircleCI License: MIT

An API service that provides RESTful access to CSV or tabular data converted by Hydra. This service provides a REST API to access PostgreSQL database tables containing CSV data, offering HTTP querying capabilities, pagination, and data streaming for CSV or tabular resources.

This service is mainly used, developed and maintained by data.gouv.fr - the France Open Data platform. The production API is deployed on data.gouv.fr infrastructure at https://tabular-api.data.gouv.fr/api. See the product documentation (in French) for usage details and the technical documentation for API reference.

🛠️ Installation & Setup

📋 Requirements

  • Python >= 3.11, < 3.14
  • uv for dependency management
  • Docker & Docker Compose

🧪 Run with a test database

  1. Start the Infrastructure

    Start the test CSV database and test PostgREST container:

    docker compose --profile test up -d

    The --profile test flag tells Docker Compose to start the PostgREST and PostgreSQL services for the test CSV database. This starts PostgREST on port 8080, connecting to the test CSV database. You can access the raw PostgREST API on http://localhost:8080.

  2. Launch the main API proxy

    Install dependencies and start the proxy services:

    uv sync
    uv run adev runserver -p8005 api_tabular/tabular/app.py    # Api related to apified CSV files by udata-hydra (dev server)
    uv run adev runserver -p8006 api_tabular/metrics/app.py    # Api related to udata's metrics (dev server)

    Note: For production, use gunicorn with aiohttp worker:

    # Tabular API (port 8005)
    uv run gunicorn api_tabular.tabular.app:app_factory \
      --bind 0.0.0.0:8005 \
      --worker-class aiohttp.GunicornWebWorker \
      --workers 4 \
      --access-logfile -
    
    # Metrics API (port 8006)
    uv run gunicorn api_tabular.metrics.app:app_factory \
      --bind 0.0.0.0:8006 \
      --worker-class aiohttp.GunicornWebWorker \
      --workers 4 \
      --access-logfile -

    The main API provides a controlled layer over PostgREST - exposing PostgREST directly would be too permissive, so this adds a security and access control layer.

  3. Test the API

    Query the API using a resource_id. Several test resources are available in the fake database:

    • aaaaaaaa-1111-bbbb-2222-cccccccccccc - Main test resource with 1000 rows
    • aaaaaaaa-5555-bbbb-6666-cccccccccccc - Resource with database indexes
    • dddddddd-7777-eeee-8888-ffffffffffff - Resource allowed for aggregation
    • aaaaaaaa-9999-bbbb-1010-cccccccccccc - Resource with indexes and aggregation allowed

🏭 Run with a real Hydra database

To use the API with a real database served by Hydra instead of the fake test database:

  1. Start the real Hydra CSV database locally:

    First, you need to have Hydra CSV database running locally. See the Hydra repository for instructions on how to set it up. Make sure the Hydra CSV database is accessible on localhost:5434.

  2. Start PostgREST pointing to your local Hydra database:

    docker compose --profile hydra up -d

    The --profile hydra flag tells Docker Compose to start the PostgREST service configured for a local real Hydra CSV database (instead of the test one provided by the docker compose in this repo). By default, this starts PostgREST on port 8080. You can customize the port using the PGREST_PORT environment variable:

    # Use default port 8080
    docker compose --profile hydra up -d
    
    # Use custom port (e.g., 8081)
    PGREST_PORT=8081 docker compose --profile hydra up -d
  3. Configure the API to use it:

    # If using default port 8080
    export PGREST_ENDPOINT="http://localhost:8080"
    
    # If using custom port (e.g., 8081)
    export PGREST_ENDPOINT="http://localhost:8081"
  4. Start the API services:

    uv sync
    uv run adev runserver -p8005 api_tabular/tabular/app.py     # Dev server
    uv run adev runserver -p8006 api_tabular/metrics/app.py     # Dev server

    Note: For production, use gunicorn with aiohttp worker:

    # Tabular API (port 8005)
    uv run gunicorn api_tabular.tabular.app:app_factory \
      --bind 0.0.0.0:8005 \
      --worker-class aiohttp.GunicornWebWorker \
      --workers 4 \
      --access-logfile -
    
    # Metrics API (port 8006)
    uv run gunicorn api_tabular.metrics.app:app_factory \
      --bind 0.0.0.0:8006 \
      --worker-class aiohttp.GunicornWebWorker \
      --workers 4 \
      --access-logfile -
  5. Use real resource IDs from your Hydra database instead of the test IDs.

Note: Make sure your Hydra CSV database is accessible and the database schema matches the expected structure. The test database uses the csvapi schema, while real Hydra databases typically use the public schema.

📚 API Documentation

Resource Endpoints

Get Resource Metadata

GET /api/resources/{resource_id}/

Returns basic information about the resource including creation date, URL, and available endpoints.

Example:

curl http://localhost:8005/api/resources/aaaaaaaa-1111-bbbb-2222-cccccccccccc/

Response:

{
  "created_at": "2023-04-21T22:54:22.043492+00:00",
  "url": "https://data.gouv.fr/datasets/example/resources/fake.csv",
  "links": [
    {
      "href": "/api/resources/aaaaaaaa-1111-bbbb-2222-cccccccccccc/profile/",
      "type": "GET",
      "rel": "profile"
    },
    {
      "href": "/api/resources/aaaaaaaa-1111-bbbb-2222-cccccccccccc/data/",
      "type": "GET",
      "rel": "data"
    },
    {
      "href": "/api/resources/aaaaaaaa-1111-bbbb-2222-cccccccccccc/swagger/",
      "type": "GET",
      "rel": "swagger"
    }
  ]
}

Get Resource Profile

GET /api/resources/{resource_id}/profile/

Returns the CSV profile information (column types, headers, etc.) generated by csv-detective.

Example:

curl http://localhost:8005/api/resources/aaaaaaaa-1111-bbbb-2222-cccccccccccc/profile/

Response:

{
  "profile": {
    "header": [
        "id",
        "score",
        "decompte",
        "is_true",
        "birth",
        "liste"
    ]
  },
  "...": "..."
}

Get Resource Data

GET /api/resources/{resource_id}/data/

Returns the actual data with support for filtering, sorting, and pagination.

Example:

curl http://localhost:8005/api/resources/aaaaaaaa-1111-bbbb-2222-cccccccccccc/data/

Response:

{
  "data": [
    {
        "__id": 1,
        "id": " 8c7a6452-9295-4db2-b692-34104574fded",
        "score": 0.708,
        "decompte": 90,
        "is_true": false,
        "birth": "1949-07-16",
        "liste": "[0]"
    },
    ...
  ],
  "links": {
      "profile": "http://localhost:8005/api/resources/aaaaaaaa-1111-bbbb-2222-cccccccccccc/profile/",
      "swagger": "http://localhost:8005/api/resources/aaaaaaaa-1111-bbbb-2222-cccccccccccc/swagger/",
      "next": "http://localhost:8005/api/resources/aaaaaaaa-1111-bbbb-2222-cccccccccccc/data/?page=2&page_size=20",
      "prev": null
  },
  "meta": {
      "page": 1,
      "page_size": 20,
      "total": 1000
  }
}

Get Resource Data as CSV

GET /api/resources/{resource_id}/data/csv/

Streams the data directly as a CSV file for download.

Get Resource Data as JSON

GET /api/resources/{resource_id}/data/json/

Streams the data directly as a JSON file for download.

Get Swagger Documentation

GET /api/resources/{resource_id}/swagger/

Returns OpenAPI/Swagger documentation specific to this resource.

Query Operators

The data endpoint can be queried with the following operators as query string (replacing column_name with the name of an actual column), if the column type allows it (see the swagger for each column's allowed parameters):

Filtering Operators

# exact
column_name__exact=value

# differs
column_name__differs=value

# is `null`
column_name__isnull

# is not `null`
column_name__isnotnull

# contains
column_name__contains=value

# does not contain (value does not contain)
column_name__notcontains=value

# in (value in list)
column_name__in=value1,value2,value3

# notin (value not in list)
column_name__notin=value1,value2,value3

# less
column_name__less=value

# greater
column_name__greater=value

# strictly less
column_name__strictly_less=value

# strictly greater
column_name__strictly_greater=value

Sorting

# sort by column
column_name__sort=asc
column_name__sort=desc

Aggregation Operators

⚠️ WARNING: Aggregation requests are only available for resources that are listed in the ALLOW_AGGREGATION list of the config file, which can be seen at the /api/aggregation-exceptions/ endpoint, and on columns that have an index.

# group by values
column_name__groupby

# count values
column_name__count

# mean / average
column_name__avg

# minimum
column_name__min

# maximum
column_name__max

# sum
column_name__sum

Note: Passing an aggregation operator (count, avg, min, max, sum) returns a column that is named <column_name>__<operator> (for instance: ?birth__groupby&score__sum will return a list of dicts with the keys birth and score__sum).

⚠️ WARNING: columns that contain JSON objects (see the profile to know which ones do) do not support filtering nor aggregation for now, except isnull and isnotnull.

Pagination

page=1          # Page number (default: 1)
page_size=20    # Items per page (default: 20, max: 50)

Column Selection

columns=col1,col2,col3    # Select specific columns only

Example Queries

Basic Filtering

curl http://localhost:8005/api/resources/aaaaaaaa-1111-bbbb-2222-cccccccccccc/data/?score__greater=0.9&decompte__exact=13

Returns:

{
  "data": [
    {
      "__id": 52,
      "id": " 5174f26d-d62b-4adb-a43a-c3b6288fa2f6",
      "score": 0.985,
      "decompte": 13,
      "is_true": false,
      "birth": "1980-03-23",
      "liste": "[0]"
    },
    {
      "__id": 543,
      "id": " 8705df7c-8a6a-49e2-9514-cf2fb532525e",
      "score": 0.955,
      "decompte": 13,
      "is_true": true,
      "birth": "1965-02-06",
      "liste": "[0, 1, 2]"
    }
  ],
  "links": {
    "profile": "http://localhost:8005/api/resources/aaaaaaaa-1111-bbbb-2222-cccccccccccc/profile/",
    "swagger": "http://localhost:8005/api/resources/aaaaaaaa-1111-bbbb-2222-cccccccccccc/swagger/",
    "next": null,
    "prev": null
  },
  "meta": {
    "page": 1,
    "page_size": 20,
    "total": 2
  }
}

Aggregation with Filtering

With filters and aggregators (filtering is always done before aggregation, no matter the order in the parameters):

curl http://localhost:8005/api/resources/aaaaaaaa-1111-bbbb-2222-cccccccccccc/data/?decompte__groupby&birth__less=1996&score__avg

i.e. decompte and average of score for all rows where birth<="1996", grouped by decompte, returns:

{
    "data": [
        {
            "decompte": 55,
            "score__avg": 0.7123333333333334
        },
        {
            "decompte": 27,
            "score__avg": 0.6068888888888889
        },
        {
            "decompte": 23,
            "score__avg": 0.4603333333333334
        },
        ...
    ]
}

Pagination

curl http://localhost:8005/api/resources/aaaaaaaa-1111-bbbb-2222-cccccccccccc/data/?page=2&page_size=30

Column Selection

curl http://localhost:8005/api/resources/aaaaaaaa-1111-bbbb-2222-cccccccccccc/data/?columns=id,score,birth

Metrics API

The metrics service provides similar functionality for system metrics:

# Get metrics data
curl http://localhost:8006/api/{model}/data/

# Get metrics as CSV
curl http://localhost:8006/api/{model}/data/csv/

Health Check

# Main API health
curl http://localhost:8005/health/

# Metrics API health
curl http://localhost:8006/health/

⚙️ Configuration

Configuration is handled through TOML files and environment variables. The default configuration is in api_tabular/config_default.toml.

Key Configuration Options

Option Default Description
PGREST_ENDPOINT http://localhost:8080 PostgREST server URL
SERVER_NAME localhost:8005 Server name for URL generation
SCHEME http URL scheme (http/https)
SENTRY_DSN None Sentry DSN for error reporting (optional)
PAGE_SIZE_DEFAULT 20 Default page size
PAGE_SIZE_MAX 50 Maximum allowed page size
BATCH_SIZE 50000 Batch size for streaming
DOC_PATH /api/doc Swagger documentation path
ALLOW_AGGREGATION ["dddddddd-7777-eeee-8888-ffffffffffff", "aaaaaaaa-9999-bbbb-1010-cccccccccccc"] List of resource IDs allowed for aggregation

Environment Variables

You can override any configuration value using environment variables:

export PGREST_ENDPOINT="http://my-postgrest:8080"
export PAGE_SIZE_DEFAULT=50
export SENTRY_DSN="https://your-sentry-dsn"

Once the containers are up and running, you can directly query PostgREST on: <PGREST_ENDPOINT>/<table_name>?<filters> like for example: http://localhost:8080/eb7a008177131590c2f1a2ca0?decompte=eq.10

Custom Configuration File

Create a config.toml file in the project root or set the CSVAPI_SETTINGS environment variable:

export CSVAPI_SETTINGS="/path/to/your/config.toml"

🧪 Testing

This project uses pytest for testing with async support and mocking capabilities. You must have the two test containers running for the tests to run (see ### 🧪 Run with a test database for setup instructions).

Running Tests

# Run all tests
uv run pytest

# Run specific test file
uv run pytest tests/test_api.py

# Run tests with verbose output
uv run pytest -v

# Run tests and show print statements
uv run pytest -s

Tests Structure

  • tests/test_api.py - API endpoint tests (actually pings the running API)
  • tests/test_config.py - Configuration loading tests
  • tests/test_query.py - Query building and processing tests
  • tests/test_swagger.py - Swagger documentation tests (actually pings the running API)
  • tests/test_utils.py - Utility function tests
  • tests/conftest.py - Test fixtures and configuration

CI/CD Testing

Tests are automatically run in CI/CD. See .circleci/config.yml for the complete CI/CD configuration.

🤝 Contributing

🧹 Code Linting and Formatting

This project follows PEP 8 style guidelines using Ruff for linting and formatting. Either running these commands manually or installing the pre-commit hook is required before submitting contributions.

# Lint and sort imports, and format code
uv run ruff check  --select I --fix && uv run ruff format

🔗 Pre-commit Hooks

This repository uses a pre-commit hook which lint and format code before each commit. Installing the pre-commit hook is required for contributions.

Install pre-commit hooks:

uv run pre-commit install

The pre-commit hook that automatically:

  • Check YAML syntax
  • Fix end-of-file issues
  • Remove trailing whitespace
  • Check for large files
  • Run Ruff linting and formatting

🧪 Running Tests

Pull requests cannot be merged unless all CI/CD tests pass. Tests are automatically run on every pull request and push to main branch. See .circleci/config.yml for the complete CI/CD configuration, and the 🧪 Testing section above for detailed testing commands.

🏷️ Releases and versioning

The release process uses the tag_version.sh script to create git tags, GitHub releases and update CHANGELOG.md automatically. Package version numbers are automatically derived from git tags using setuptools_scm, so no manual version updates are needed in pyproject.toml.

Prerequisites: GitHub CLI must be installed and authenticated, and you must be on the main branch with a clean working directory.

# Create a new release
./tag_version.sh <version>

# Example
./tag_version.sh 2.5.0

# Dry run to see what would happen
./tag_version.sh 2.5.0 --dry-run

The script automatically:

  • Extracts commits since the last tag and formats them for CHANGELOG.md
  • Identifies breaking changes (commits with !: in the subject)
  • Creates a git tag and pushes it to the remote repository
  • Creates a GitHub release with the changelog content

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🆘 Support

🌐 Production Resources

About

REST API to browse tabular data crawled and stored in data.gouv.fr databases

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 6