Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 46 additions & 0 deletions decode/fit.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,3 +93,49 @@ def dtau_dpwv(freq: NDArray[np.float_]) -> xr.DataArray:
tau = load.atm(type="tau").interp(freq=freq, method="linear")
fit = tau.curvefit("pwv", lambda x, a, b: a * x + b)
return fit["curvefit_coefficients"].sel(param="a", drop=True)


def cube(
cube: xr.DataArray,
/,
*,
init_amp: float = 1.0,
init_x0: float = 0.0,
init_y0: float = 0.0,
init_sigma_x: float = 20.0,
init_sigma_y: float = 20.0,
init_theta: float = 0.0,
init_offset: float = 0.0,
) -> xr.Dataset:
"""Apply 2D Gaussian fit to each channel of a 3D spectral cube."""
return cube.curvefit(
coords=("lon", "lat"),
func=gaussian_2d,
p0={
"amp": init_amp,
"x0": init_x0,
"y0": init_y0,
"sigma_x": init_sigma_x,
"sigma_y": init_sigma_y,
"theta": init_theta,
"offset": init_offset,
},
errors="ignore",
)


def gaussian_2d(xy, amp, x0, y0, sigma_x, sigma_y, theta, offset):
x, y = xy
x0 = float(x0)
y0 = float(y0)
a = (np.cos(theta) ** 2) / (2 * sigma_x**2) + (np.sin(theta) ** 2) / (
2 * sigma_y**2
)
b = -(np.sin(2 * theta)) / (4 * sigma_x**2) + (np.sin(2 * theta)) / (4 * sigma_y**2)
c = (np.sin(theta) ** 2) / (2 * sigma_x**2) + (np.cos(theta) ** 2) / (
2 * sigma_y**2
)
g = offset + amp * np.exp(
-(a * ((x - x0) ** 2) + 2 * b * (x - x0) * (y - y0) + c * ((y - y0) ** 2))
)
return g.ravel()
15 changes: 12 additions & 3 deletions decode/qlook.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
from pathlib import Path
from typing import Any, Literal, Optional, Sequence, Union, cast
from warnings import catch_warnings, simplefilter

import copy

# dependencies
import numpy as np
Expand All @@ -26,8 +26,9 @@
from astropy.units import Quantity
from fire import Fire
from matplotlib.figure import Figure
from . import assign, convert, load, make, plot, select, utils

from scipy.optimize import curve_fit
from . import assign, convert, load, make, plot, select, utils, fit
import pandas as pd

# constants
DATA_FORMATS = "csv", "nc", "zarr", "zarr.zip"
Expand Down Expand Up @@ -223,6 +224,10 @@ def daisy(
)
cont = cube.weighted(weight.fillna(0)).mean("chan")

### GaussFit (all chan)
fitted_cube = fit.cube(cube)
# to toml here

# save result
suffixes = f".{suffix}.{format}"
file = Path(outdir) / Path(dems).with_suffix(suffixes).name
Expand Down Expand Up @@ -446,6 +451,10 @@ def raster(
)
cont = cube.weighted(weight.fillna(0)).mean("chan")

### GaussFit (all chan)
fitted_cube = fit.cube(cube)
# to toml here

# save result
suffixes = f".{suffix}.{format}"
file = Path(outdir) / Path(dems).with_suffix(suffixes).name
Expand Down