AI coding agents that work autonomously while you sleep. Check in like a coworker, answer questions when needed, ship features continuously.
CodeFRAME is an autonomous AI development system where specialized agents collaborate to build software features end-to-end. It combines multi-agent orchestration, human-in-the-loop blockers, and intelligent context management to enable truly autonomous software development cycles.
Unlike traditional AI coding assistants that wait for your prompts, CodeFRAME agents work independently on tasks, ask questions when blocked, and coordinate with each other to ship complete features—day and night.
Two modes of operation:
- CLI-first (v2) — Complete Golden Path workflow from the command line, no server required
- Dashboard (v1) — Real-time web UI with WebSocket updates for monitoring and interaction
We've completed the v2 strategic planning and published a comprehensive 5-phase roadmap:
- Phase 1 (Current): CLI Foundation -
cf prd generate, live streaming, integration tests - Phase 2: Server Layer as thin adapter over core
- Phase 3: Web UI rebuild on v2 foundation
- Phase 4: Multi-Agent Coordination (the "FRAME" vision)
- Phase 5: Advanced Features (TUI, metrics, replay)
See docs/V2_STRATEGIC_ROADMAP.md for full details.
New cf env commands — Validate your development environment and auto-install missing tools.
# Quick environment health check
cf env check
# Comprehensive diagnostics
cf env doctor
# Install a specific missing tool
cf env install-missing pytest
# Auto-install all missing required tools
cf env auto-install --yesSupported tool ecosystems:
- Python: pytest, ruff, mypy, black, flake8, coverage, pre-commit
- JavaScript/TypeScript: eslint, prettier, jest, typescript, vite, vitest
- Rust: clippy, rustfmt, rust-analyzer, cargo-edit
- System: git, docker, make, curl, gh
New cf pr commands — Manage pull requests directly from the CLI.
# Create a PR from current branch
cf pr create --title "Add feature X" --body "Description..."
# List open PRs
cf pr list
# View PR details
cf pr view 123
# Merge a PR
cf pr merge 123 --method squash
# Close a PR
cf pr close 123New cf work diagnose command — Automatically analyze failed tasks and get actionable recommendations.
# Diagnose why a task failed
cf work diagnose <task-id>
# Verbose output with detailed logs
cf work diagnose <task-id> --verboseThe diagnostic agent analyzes run logs, identifies root causes, and provides specific fix recommendations.
- Fixed #265: NoneType error when
codebase_indexis None during task execution - Fixed #253: Checkpoint diff API now returns 404 instead of 500 when workspace directory is missing
Task Scheduling & Templates
Task Scheduling with Critical Path Analysis:
# Show task schedule with dependencies
cf schedule show
# Predict completion dates
cf schedule predict
# Identify bottleneck tasks
cf schedule bottlenecksTask Templates for Common Patterns:
# List available templates
cf templates list
# Show template details
cf templates show api-endpoint
# Apply template to generate tasks
cf templates apply api-endpoint --name "User API"7 Built-in Templates:
api-endpoint- REST API endpoint with testsreact-component- React component with testsdatabase-migration- Schema migration with rollbackcli-command- CLI command with help and testsintegration-test- Integration test suitebug-fix- Bug investigation and fix workflowfeature-flag- Feature flag implementation
Effort Estimation:
- Tasks now support
estimated_hoursfield - CPM-based scheduling calculates critical path
- Bottleneck detection identifies blocking tasks
Tech Stack Configuration (2026-01-16)
Describe your tech stack — Tell CodeFRAME what technologies your project uses during initialization.
# Auto-detect from project files (pyproject.toml, package.json, Cargo.toml, etc.)
cf init . --detect
# Provide explicit tech stack description
cf init . --tech-stack "Python 3.11 with FastAPI, uv, pytest"
cf init . --tech-stack "TypeScript monorepo with pnpm, Next.js frontend"
cf init . --tech-stack "Rust project using cargo"
# Interactive setup
cf init . --tech-stack-interactiveWhy this matters: The agent uses your tech stack description to determine appropriate commands and patterns. Works with any stack — Python, TypeScript, Rust, Go, monorepos, or mixed environments.
Agent Self-Correction & Observability (2026-01-16)
Verification self-correction loop — Agent now automatically attempts to fix failing verification gates.
# Execute with verbose output to see self-correction progress
cf work start <task-id> --execute --verbose
# Watch the agent attempt fixes in real-time
[VERIFY] Running final verification (attempt 1/3)
[VERIFY] Gates failed: pytest, ruff
[SELFCORRECT] Attempting to fix verification failures
[SELFCORRECT] Applied 2/2 fixes, re-verifying...Capabilities:
- Self-Correction Loop — Agent analyzes gate errors and generates fix plans using LLM
- Verbose Mode —
--verbose/-vflag shows detailed verification and self-correction progress - FAILED Task Status — Tasks can now transition to FAILED state for proper error visibility
- Project Preferences — Agent loads AGENTS.md or CLAUDE.md for per-project configuration
Parallel Batch Execution (2026-01-15)
Multi-task batch execution — Run multiple tasks with intelligent parallelization.
# Execute multiple tasks in parallel
cf work batch run task1 task2 task3 --strategy parallel
# Execute all READY tasks with LLM-inferred dependencies
cf work batch run --all-ready --strategy auto
# Automatic retry on failure
cf work batch run --all-ready --retry 3Batch Capabilities:
- Parallel Execution — ThreadPoolExecutor-based concurrent task execution
- Dependency Graph — DAG-based task ordering with cycle detection
- LLM Dependency Inference —
--strategy autoanalyzes task descriptions to infer dependencies - Automatic Retry —
--retry Nretries failed tasks up to N times - Batch Resume —
cf work batch resume <batch-id>re-runs failed/blocked tasks
- Autonomous Execution —
cf work start --executeruns the full agent loop - Self-Correction Loop — Agent automatically fixes failing verification gates (up to 3 attempts)
- Human-in-the-Loop Blockers — Agents pause and ask questions when they need decisions
- Verification Gates — Automatic ruff/pytest checks after changes
- Verbose Mode —
--verboseflag shows detailed progress and self-correction activity - Dry Run Mode — Preview changes without applying them
- State Persistence — Resume work across sessions
- Task Diagnosis — Automatic root cause analysis for failed tasks
- Multi-Agent Orchestra — Lead agent coordinates backend, frontend, test, and review specialists
- Async/Await Architecture — Non-blocking agent execution with true concurrency
- Self-Correction Loops — Agents automatically fix failing tests (up to 3 attempts)
- WebSocket Agent Broadcasting — Real-time agent status updates to all connected clients
- Tactical Pattern Handling — Automatic resolution of common file conflicts
- AI Quality Enforcement — Dual-layer quality system preventing test skipping and enforcing 85%+ coverage
- Quality Gates — Pre-completion checks block bad code (tests, types, coverage, review)
- BUILD Gate — Validates configuration errors before execution
- Automated Code Review — Security scanning, OWASP pattern detection, and complexity analysis
- Lint Enforcement — Multi-language linting with trend tracking and automatic fixes
- Context-Aware Memory — Tiered HOT/WARM/COLD memory system reduces token usage by 30-50%
- Session Lifecycle — Auto-save/restore work context across CLI restarts
- Checkpoint & Recovery — Git + DB snapshots enable project state rollback
- Phase-Aware Components — UI intelligently selects data sources based on project phase
- Real-time Dashboard — WebSocket-powered UI with agent status, blockers, and progress tracking
- Environment Validation —
cf env checkvalidates tools and dependencies - PR Workflow —
cf pr create/list/mergefor GitHub integration - Task Scheduling — CPM-based critical path analysis
- Task Templates — 7 built-in templates for common development patterns
- Cost Tracking — Real-time token usage and cost analytics per agent/task
┌─────────────────────────────────────────────────────────────┐
│ CLI / Agent Orchestrator │
│ • cf work start --execute │
│ • Context loading → Planning → Execution → Verification │
│ • Blocker detection and human-in-loop │
└─────────────┬──────────────┬──────────────┬────────────┬────┘
│ │ │ │
┌───────▼───┐ ┌──────▼──────┐ ┌───▼────────┐ ┌▼────────┐
│ Backend │ │ Frontend │ │ Test │ │ Review │
│ Worker │ │ Worker │ │ Worker │ │ Worker │
│ (async) │ │ (async) │ │ (async) │ │ (async) │
└─────┬─────┘ └──────┬──────┘ └─────┬──────┘ └────┬────┘
│ │ │ │
│ ┌─────────────▼───────────────▼──────────────▼─────┐
│ │ Blocker Management (Sync/Async) │
│ │ • Database-backed queue (SQLite) │
│ │ • Human-in-the-loop questions │
│ └───────────────────────────────────────────────────┘
│
┌───────▼──────────────────────────────────────────────────┐
│ Context Management Layer │
│ • Tiered memory (HOT/WARM/COLD) │
│ • Importance scoring & tier assignment │
│ • Flash save mechanism │
└──────────────────────────────────────────────────────────┘
- Python 3.11+
- Node.js 18+ (for frontend, optional)
- Anthropic API key
- SQLite 3 (included with Python)
# Clone repository
git clone https://github.com/frankbria/codeframe.git
cd codeframe
# Install uv package manager
curl -LsSf https://astral.sh/uv/install.sh | sh
# Set up backend
uv venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
uv sync
# Set up environment
export ANTHROPIC_API_KEY="your-api-key-here"
# Validate environment (optional but recommended)
cf env check# 1. Initialize workspace (with optional tech stack detection)
cd /path/to/your/project
cf init . --detect
# Or explicit: cf init . --tech-stack "Python with FastAPI, uv, pytest"
# 2. Add a PRD (Product Requirements Document)
cf prd add requirements.md
# 3. Generate tasks from PRD
cf tasks generate
# 4. List tasks
cf tasks list
# 5. Start work on a task (with AI agent)
cf work start <task-id> --execute
# 6. Check for blockers (questions the agent needs answered)
cf blocker list
cf blocker answer <blocker-id> "Your answer here"
# 7. Resume work after answering blockers
cf work resume <task-id>
# 8. If a task fails, diagnose the issue
cf work diagnose <task-id>
# 9. Review changes and create checkpoint
cf review
cf checkpoint create "Feature complete"# Start the dashboard (from project root)
codeframe serve
# Or manually start backend and frontend separately:
# Terminal 1: Backend
uv run uvicorn codeframe.ui.server:app --reload --port 8080
# Terminal 2: Frontend
cd web-ui && npm install && npm run dev
# Access dashboard at http://localhost:3000cf init <path> # Initialize workspace for a repo
cf init <path> --detect # Initialize + auto-detect tech stack
cf init <path> --tech-stack "description" # Initialize + explicit tech stack
cf init <path> --tech-stack-interactive # Initialize + interactive setup
cf status # Show workspace statuscf env check # Quick environment health check
cf env doctor # Comprehensive diagnostics
cf env install-missing <tool> # Install specific missing tool
cf env auto-install --yes # Install all missing toolscf prd add <file.md> # Add/update PRD
cf prd show # Display current PRD
cf prd list # List all PRDs
cf prd versions <id> # Show version history
cf prd diff <id> <v1> <v2> # Compare versionscf tasks generate # Generate tasks from PRD (uses LLM)
cf tasks list # List all tasks
cf tasks list --status READY # Filter by status
cf tasks show <id> # Show task detailscf schedule show # Show task schedule with dependencies
cf schedule predict # Predict completion dates
cf schedule bottlenecks # Identify blocking taskscf templates list # List available templates
cf templates show <name> # Show template details
cf templates apply <name> # Generate tasks from templatecf work start <id> # Start work (creates run record)
cf work start <id> --execute # Start with AI agent execution
cf work start <id> --execute --verbose # Execute with detailed output
cf work start <id> --execute --dry-run # Preview changes only
cf work stop <id> # Stop current run
cf work resume <id> # Resume blocked work
cf work diagnose <id> # Diagnose failed taskcf work batch run <id1> <id2> ... # Execute multiple tasks
cf work batch run --all-ready # Execute all READY tasks
cf work batch run --strategy parallel # Parallel execution
cf work batch run --strategy auto # LLM-inferred dependencies
cf work batch run --retry 3 # Auto-retry failed tasks
cf work batch status [batch_id] # Show batch status
cf work batch cancel <batch_id> # Cancel running batch
cf work batch resume <batch_id> # Re-run failed taskscf blocker list # List open blockers
cf blocker show <id> # Show blocker details
cf blocker answer <id> "answer" # Answer a blockercf pr create --title "..." --body "..." # Create PR
cf pr list # List open PRs
cf pr view <number> # View PR details
cf pr merge <number> --method squash # Merge PR
cf pr close <number> # Close PRcf review # Run verification gates
cf patch export # Export changes as patch
cf commit # Commit changescf checkpoint create <name> # Create checkpoint
cf checkpoint list # List checkpoints
cf checkpoint restore <id> # Restore to checkpoint
cf summary # Show session summary# Required
ANTHROPIC_API_KEY=sk-ant-... # Anthropic API key
# Optional - Database
DATABASE_PATH=./codeframe.db # SQLite database path (default: in-memory)
# Optional - Quality Enforcement
MIN_COVERAGE_PERCENT=85 # Minimum test coverage required
CODEFRAME_ENABLE_SKIP_DETECTION=true # Enable skip detection gate (default: true)
# Optional - Git Integration
AUTO_COMMIT_ENABLED=true # Enable automatic commits after test passes
# Optional - Notifications
NOTIFICATION_DESKTOP_ENABLED=true # Enable desktop notifications
NOTIFICATION_WEBHOOK_URL=https://... # Webhook endpoint for agent events
# Frontend (set at build time for Next.js)
NEXT_PUBLIC_API_URL=http://localhost:8080
NEXT_PUBLIC_WS_URL=ws://localhost:8080/wsSee CLAUDE.md in project root for project-specific configuration including:
- Active technologies and frameworks
- Coding standards and conventions
- Testing requirements
- Documentation structure
POST /api/projects # Create project
GET /api/projects/{id} # Get project details
POST /api/projects/{id}/prd # Submit PRD
GET /api/projects/{id}/agents # List agents
POST /api/projects/{id}/agents # Create agent
GET /api/projects/{id}/blockers # List blockers
POST /api/blockers/{id}/answer # Answer blocker
GET /api/projects/{id}/tasks # List tasks
GET /api/tasks/{id} # Get task details
POST /api/tasks/approve # Approve tasks for development
GET /api/schedule/{project_id} # Get task schedule
GET /api/templates # List task templates
POST /api/templates/{name}/apply # Apply template
WS /ws?token=JWT_TOKEN # WebSocket connection (auth required)
For detailed API documentation, see /docs (Swagger UI) or /redoc (ReDoc) when the server is running.
# Run all unit tests
uv run pytest
# Run specific test suite
uv run pytest tests/core/ # Core module tests
uv run pytest tests/agents/ # Agent tests
uv run pytest tests/api/ # API endpoint tests
uv run pytest tests/cli/ # CLI command tests
# Run with coverage
uv run pytest --cov=codeframe --cov-report=html
# Run v2 tests only
uv run pytest -m v2- Total Tests: 3000+
- Core module tests: ~815
- Unit tests: ~900 (Python + TypeScript)
- Integration tests: ~500
- E2E tests: 85+ (Backend + Playwright)
- Coverage: 88%+
- Pass Rate: 100%
For detailed documentation, see:
- Strategic Roadmap: docs/V2_STRATEGIC_ROADMAP.md - 5-phase development plan
- Quick Start (v2): docs/QUICKSTART.md - Get started in 5 minutes
- Golden Path (v2): docs/GOLDEN_PATH.md - CLI-first workflow contract
- Agent Implementation: docs/AGENT_IMPLEMENTATION_TASKS.md - Agent system details
- CLI Wireframe: docs/CLI_WIREFRAME.md - Command structure
- CLI Test Report: docs/CLI_V2_TEST_REPORT.md - End-to-end test results
- Product Requirements: PRD.md
- System Architecture: CODEFRAME_SPEC.md
- Authentication: docs/authentication.md - Security guide
- Sprint Planning: SPRINTS.md
- Agent Guide: AGENTS.md
We welcome contributions! To get started:
- Fork and clone the repository
- Install dependencies:
uv sync - Install pre-commit hooks:
pre-commit install - Run tests to ensure everything works:
uv run pytest
- Python: Follow PEP 8, use
rufffor linting - TypeScript: Follow ESLint rules, use Prettier for formatting
- Type Hints: Required for all Python functions
- Tests: Required for all new features (85%+ coverage)
- Documentation: Update README and docstrings for API changes
- Create a feature branch:
git checkout -b feature/my-feature - Write tests first (TDD approach encouraged)
- Implement feature with proper error handling
- Ensure all tests pass:
uv run pytest - Run quality checks:
uv run ruff check . - Update documentation if needed
- Submit PR with clear description of changes
- Phase 0: CLI-first Golden Path workflow
- Phase 1 (Batch): Batch execution (serial), status monitoring, cancellation
- Phase 2 (Batch): Parallel execution, dependency graphs, LLM inference, auto-retry
- Autonomous agent execution with blocker detection
- Verification gates integration
- Task-based model selection
- Self-correction loop for verification failures
- Verbose mode for observability
- Task scheduling with CPM analysis
- Task templates (7 built-in)
- Environment validation and tool detection
- GitHub PR workflow commands
- Task self-diagnosis system
cf prd generate: Interactive AI-driven PRD creation (Socratic discovery)cf work follow: Live streaming of task execution- Integration tests: Credential and environment module coverage
- Phase 2: Server layer as thin adapter, OpenAPI docs, rate limiting
- Phase 3: Web UI rebuild on v2 foundation
- Phase 4: Multi-agent coordination, agent roles, conflict resolution
- Phase 5: TUI dashboard, token/cost tracking, debug/replay mode
See docs/V2_STRATEGIC_ROADMAP.md for the complete roadmap.
This project is licensed under the GNU Affero General Public License v3.0 (AGPL-3.0).
Key points:
- Open Source: Free to use, modify, and distribute
- Copyleft: Derivative works must also be AGPL-3.0
- Network Use: If you run a modified version as a service, you must release source code
- Commercial Use: Permitted with AGPL-3.0 compliance
See LICENSE for full details.
- Frank Bria - Creator and Lead Developer
- Anthropic Claude - AI reasoning engine powering all agents
- FastAPI - High-performance async web framework
- FastAPI Users - Authentication and user management
- React + TypeScript - Modern frontend with real-time updates
- SQLite - Embedded database for persistence
- Playwright - End-to-end testing framework
- pytest + jest - Comprehensive testing frameworks
Built on the principles of:
- Autonomous agent systems (AutoGPT, BabyAGI)
- Multi-agent orchestration (LangGraph, CrewAI)
- Human-in-the-loop design (Constitutional AI)
- Test-driven development (Kent Beck, Robert Martin)
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Documentation: Full Documentation
Built with care by humans and AI agents working together