/data/-> Folder for the datasets, before(.csv, .tar.gz, etc..) and after (.graphml) preprocessing/exp_shuffles/-> Folder for PDA experiment result binaries/experiment/-> Folder for main experiment result binaries/figures/-> Folder for saved figures of plots/test_notebooks/-> Folder for the notebooks used for testingpreprocessing.ipynb-> Preprocessing of the datasetsrun_experiment.ipynb-> Compute counts and significance of motifs in the datasets and save the results as binary files.compare_z_scores.ipynb-> One on one comparison of motifsread_and_plot.ipynb-> Batch processing and plottingexample.ipynb-> Example experiment on Escherichia Coli datasetperformance_degradation_analysis.ipynb-> Experiment on performance degration ofmotif_significance()when using speed-up parameters
Hopefully this works:
conda create --name fl-gt --file requirements.txt
conda activate fl-gt
jupyter notebook