Skip to content

hgeraei/Deep-Learning-with-PyTorch-Build-an-AutoEncoder

Repository files navigation

Deep Learning with PyTorch: Build an AutoEncoder

This repository contains materials and code for building an AutoEncoder using PyTorch. It includes a complete Jupyter Notebook implementation, helper utilities, and illustrative images for understanding encoder--decoder architecture and denoising AutoEncoders.

πŸ“ Repository Structure

Deep-Learning-with-PyTorch-Build-an-AutoEncoder-main/
β”‚
β”œβ”€β”€ README.md
└── Project-files/
    β”œβ”€β”€ Build an AutoEncoder.ipynb
    β”œβ”€β”€ helper.py
    β”œβ”€β”€ dataset.png
    └── denoising_autoencoder.png

πŸ“„ Contents

1. Build an AutoEncoder.ipynb

A fully implemented notebook demonstrating: - Construction of encoder and decoder networks\

  • Training a basic AutoEncoder\
  • Visualizing reconstructions\
  • Extending the model to a denoising AutoEncoder

2. helper.py

Contains utility functions used within the notebook, such as data loading, plotting, and preprocessing helpers.

3. Images

  • dataset.png --- Sample dataset visualization.\
  • denoising_autoencoder.png --- Diagram illustrating the denoising AutoEncoder architecture.

πŸš€ Getting Started

Requirements

  • Python 3.8+
  • PyTorch\
  • NumPy\
  • Matplotlib\
  • Jupyter Notebook

Install dependencies:

pip install torch numpy matplotlib jupyter

Running the Notebook

jupyter notebook "Build an AutoEncoder.ipynb"

πŸ“¬ Contact

If you need help modifying the AutoEncoder, extending it to convolutional layers, or applying it to your own dataset, feel free to ask!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published