This repository contains materials and code for building an AutoEncoder using PyTorch. It includes a complete Jupyter Notebook implementation, helper utilities, and illustrative images for understanding encoder--decoder architecture and denoising AutoEncoders.
Deep-Learning-with-PyTorch-Build-an-AutoEncoder-main/
β
βββ README.md
βββ Project-files/
βββ Build an AutoEncoder.ipynb
βββ helper.py
βββ dataset.png
βββ denoising_autoencoder.png
A fully implemented notebook demonstrating: - Construction of encoder and decoder networks\
- Training a basic AutoEncoder\
- Visualizing reconstructions\
- Extending the model to a denoising AutoEncoder
Contains utility functions used within the notebook, such as data loading, plotting, and preprocessing helpers.
- dataset.png --- Sample dataset visualization.\
- denoising_autoencoder.png --- Diagram illustrating the denoising AutoEncoder architecture.
- Python 3.8+
- PyTorch\
- NumPy\
- Matplotlib\
- Jupyter Notebook
Install dependencies:
pip install torch numpy matplotlib jupyterjupyter notebook "Build an AutoEncoder.ipynb"If you need help modifying the AutoEncoder, extending it to convolutional layers, or applying it to your own dataset, feel free to ask!