Skip to content

QueryBox πŸ€– is an AI-powered interview preparation bot that simulates technical πŸ’» and behavioral πŸ’¬ interviews. Users pick roles & domains, practice Q&A, and get instant feedback on clarity, correctness, and accuracy. A final summary highlights strengths, weaknesses, and resources. πŸš€

Notifications You must be signed in to change notification settings

karansingh012/QueryBox

Repository files navigation

QueryBox AI

QueryBox πŸ€– is an AI-powered interview preparation bot that simulates technical πŸ’» and behavioral πŸ’¬ interviews. Users pick roles & domains, practice Q&A, and get instant feedback on clarity, correctness, and accuracy. A final summary highlights strengths, weaknesses, and resources. πŸš€

πŸš€ Features

  • AI-powered query processing
  • Modern React frontend with responsive design
  • Python Flask backend with robust API
  • Real-time query processing
  • Clean and intuitive user interface

πŸ› οΈ Tech Stack

Frontend

  • React - Modern JavaScript library for building user interfaces
  • Vite - Fast build tool and development server
  • CSS3 - Modern styling with responsive design

Backend

  • Python - Core programming language
  • Flask - Lightweight web framework
  • Gemini AI - AI model integration for query processing

πŸ“ Project Structure

QueryBox/
β”œβ”€β”€ frontend/                 # React application
β”‚   β”œβ”€β”€ src/
β”‚   β”‚   β”œβ”€β”€ App.jsx          # Main React component
β”‚   β”‚   β”œβ”€β”€ api.js           # API communication
β”‚   β”‚   β”œβ”€β”€ assets/          # Static assets
β”‚   β”‚   └── ...
β”‚   β”œβ”€β”€ package.json         # Frontend dependencies
β”‚   └── vite.config.js       # Vite configuration
β”œβ”€β”€ backend/                 # Python Flask server
β”‚   β”œβ”€β”€ app.py              # Main Flask application
β”‚   β”œβ”€β”€ requirements.txt    # Python dependencies
β”‚   └── .env.example        # Environment variables template
└── README.md              # Project documentation

πŸš€ Getting Started

Prerequisites

  • Node.js (v14 or higher)
  • Python (v3.7 or higher)
  • pip (Python package manager)

Installation

  1. Clone the repository

    git clone https://github.com/karansingh012/QueryBox.git
    cd QueryBox
  2. Setup Backend

    cd backend
    pip install -r requirements.txt
    cp .env.example .env
    # Edit .env file with your API keys
    python app.py
  3. Setup Frontend

    cd frontend
    npm install
    npm run dev
  4. Access the application

    • Frontend: http://localhost:5173
    • Backend: http://localhost:5000

πŸ”§ Configuration

  1. Copy backend/.env.example to backend/.env
  2. Add your API keys and configuration:
    GEMINI_API_KEY=your_gemini_api_key_here
    FLASK_ENV=development
    

🀝 Contributing

  1. Fork the project
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

πŸ“ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ‘¨β€πŸ’» Author

Karan Singh

πŸ™ Acknowledgments

  • Thanks to Google Gemini AI for powering the intelligent query processing
  • Built with modern web technologies for optimal performance

About

QueryBox πŸ€– is an AI-powered interview preparation bot that simulates technical πŸ’» and behavioral πŸ’¬ interviews. Users pick roles & domains, practice Q&A, and get instant feedback on clarity, correctness, and accuracy. A final summary highlights strengths, weaknesses, and resources. πŸš€

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •