Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
573 changes: 573 additions & 0 deletions CODE_EXECUTION_MCP_GAP_ANALYSIS.md

Large diffs are not rendered by default.

1,127 changes: 1,127 additions & 0 deletions CODE_EXECUTION_MCP_IMPLEMENTATION_PLAN.md

Large diffs are not rendered by default.

353 changes: 353 additions & 0 deletions CODE_EXECUTION_MCP_SUMMARY.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,353 @@
# Code Execution with MCP - Project Summary

**Date:** 2025-11-15
**Status:** Ready for Review
**Implementation Timeline:** 12 weeks (3 phases)

## Quick Links

- [Technical Specification](./CODE_EXECUTION_WITH_MCP_SPEC.md) - Full architectural design
- [Gap Analysis](./CODE_EXECUTION_MCP_GAP_ANALYSIS.md) - Current capabilities vs. requirements
- [Implementation Plan](./CODE_EXECUTION_MCP_IMPLEMENTATION_PLAN.md) - Detailed 12-week roadmap

## Executive Summary

This project implements Anthropic's "Code Execution with MCP" approach in Terraphim AI, achieving:
- **98% token reduction** (150K → 2K tokens for complex workflows)
- **Faster execution** (sub-2 second response times)
- **Unlimited tool scaling** (support 100+ tools without degradation)
- **Enhanced privacy** (data processing in sandbox, not context)

## The Problem

Traditional AI agent workflows consume massive amounts of tokens:
1. **Load all tool definitions** upfront → 10K-20K tokens
2. **Every tool call** passes results through context → 5K-50K tokens each
3. **Chain multiple calls** → 150K+ tokens total

This creates:
- ❌ High API costs
- ❌ Increased latency
- ❌ Context window limits
- ❌ Impossible to scale to many tools

## The Solution

**Treat MCP servers as code APIs** instead of direct tool calls:

```typescript
// Instead of: Multiple separate tool calls through context
// Result: Tool def (1K) + Call 1 (8K) + Call 2 (5K) + Call 3 (10K) = 24K tokens

// Do this: Write code that uses tools programmatically
import { terraphim } from 'mcp-servers';

async function analyzeDocuments() {
const docs = await terraphim.search({ query: "rust async", limit: 100 });
const relevant = docs.filter(d => d.rank > 0.8);
return { count: relevant.length, top: relevant[0] };
}
// Result: Code (500) + Final result (500) = 1K tokens
```

**Benefits:**
- ✅ 98% token reduction
- ✅ Faster execution (parallel processing in code)
- ✅ Better privacy (data stays in sandbox)
- ✅ Unlimited tools (load only what's needed)
- ✅ Reusable skills (save successful patterns)

## Can Terraphim AI Do This Today?

### Current Capabilities ✅

**YES - Terraphim AI has most infrastructure:**

1. **✅ Secure Code Execution**
- Firecracker VMs operational
- Sub-2 second boot times
- Python, JavaScript, Bash, Rust support
- Location: `crates/terraphim_multi_agent/src/vm_execution/`

2. **✅ MCP Server**
- 17 tools available
- Search, autocomplete, analysis
- Location: `crates/terraphim_mcp_server/`

3. **✅ Agent System**
- Multi-agent coordination
- Lifecycle management
- Location: `crates/terraphim_agent_supervisor/`, `crates/terraphim_multi_agent/`

4. **✅ State Persistence**
- Multiple storage backends
- Location: `crates/terraphim_persistence/`

### Missing Capabilities ❌

**NO - Three critical components needed:**

1. **❌ MCP Code APIs** (Critical)
- MCP tools not importable as modules
- Need TypeScript/Python wrappers
- **Effort:** 2 weeks

2. **❌ In-VM MCP Runtime** (Critical)
- Tools not callable from within VM
- Need bridge between VM and MCP
- **Effort:** 2 weeks

3. **❌ Progressive Tool Discovery** (Important)
- No tool search/categorization
- No dynamic documentation
- **Effort:** 1 week

### Overall Assessment

**Current Readiness: 60%**
- ✅ Infrastructure exists (VMs, MCP, agents)
- ❌ Integration layer missing (code APIs, runtime bridge)
- **Implementation Time: 12 weeks** to production-ready

## Implementation Overview

### Phase 1: Foundation (Weeks 1-4)
**Goal:** Basic code execution with MCP tools

**Key Tasks:**
1. Create MCP code API layer
2. Generate TypeScript/Python wrappers
3. Build MCP runtime for VMs
4. Update agent prompts for code-first approach

**Deliverables:**
- Agents can import MCP tools in code
- >80% token reduction achieved
- End-to-end workflow functional

### Phase 2: Discovery & Scale (Weeks 5-8)
**Goal:** Support 100+ tools efficiently

**Key Tasks:**
1. Implement progressive tool discovery
2. Add workspace management
3. Create token optimization metrics
4. Build documentation system

**Deliverables:**
- Tool discovery <100ms
- Support 100+ tools
- Metrics dashboard live

### Phase 3: Skills & Production (Weeks 9-12)
**Goal:** Production-ready with reusable skills

**Key Tasks:**
1. Build skill library system
2. Performance optimization (caching, pooling)
3. Production hardening (monitoring, docs)
4. Security audit and deployment

**Deliverables:**
- Skill library functional
- 98%+ token reduction
- 1000+ concurrent agents
- Production deployed

## Success Metrics

### Token Efficiency
- **Baseline:** 150K tokens (traditional approach)
- **Target:** 2K tokens (code execution)
- **Reduction:** 98%+

### Performance
- **Code Execution:** <2 seconds
- **Tool Discovery:** <100ms
- **End-to-End:** <5 seconds

### Scalability
- **Tools:** 500+ without degradation
- **Agents:** 1000+ concurrent
- **Uptime:** 99.9%

### Quality
- **Code Success Rate:** >95%
- **Security:** 0 sandbox escapes
- **Test Coverage:** >85%

## Resource Requirements

### Team
- **Senior Rust Engineer:** 1 FTE (12 weeks)
- **Full-Stack Engineer:** 0.5 FTE (12 weeks)
- **DevOps Engineer:** 0.25 FTE (weeks 9-12)
- **Technical Writer:** 0.25 FTE (weeks 10-12)

### Infrastructure
- Development environment (4 vCPUs, 16GB RAM)
- Staging environment (8 vCPUs, 32GB RAM)
- Firecracker VMs, Docker containers
- Monitoring stack (Prometheus, Grafana)

## Key Technical Components

### 1. MCP Code API Layer
**New Crate:** `crates/terraphim_mcp_codegen/`

Generates TypeScript/Python wrappers for MCP tools:
```typescript
// Auto-generated from MCP server introspection
export async function search(params: SearchParams): Promise<SearchResults> {
return await mcpCall('search', params);
}
```

### 2. MCP Runtime for VMs
**New Module:** `crates/terraphim_multi_agent/src/vm_execution/mcp_runtime.rs`

Makes MCP tools available in VM environment:
```rust
pub struct McpRuntime {
mcp_client: Arc<McpClient>,
}

impl McpRuntime {
pub async fn call_tool(&self, name: &str, params: Value) -> Result<Value>;
pub fn inject_into_vm(&self, vm_id: &str) -> Result<()>;
}
```

### 3. Code-First Agent Prompts
**New Module:** `crates/terraphim_multi_agent/src/prompts/code_execution.rs`

Optimized prompts for code generation:
```
You solve problems by writing code that imports MCP tools.

Available tools:
import { terraphim } from 'mcp-servers';

Example:
async function analyze() {
const docs = await terraphim.search({ query: "...", limit: 100 });
return docs.filter(d => d.rank > 0.8);
}
```

### 4. Skill Library
**New Crate:** `crates/terraphim_skills/`

Stores reusable code patterns:
```markdown
# SKILL: Knowledge Graph Analysis

## Function
async function analyzeKnowledgeGraph(text: string): Promise<Report>

## Usage History
- Success Rate: 95%
- Avg Time: 1.8s
```

## Risk Assessment

### Technical Risks
| Risk | Impact | Mitigation |
|------|--------|------------|
| Code generation quality | Medium | Validation, testing, fallback |
| Sandbox escape | High | Multiple isolation layers, audit |
| Performance degradation | Low | Caching, pooling, monitoring |

### Project Risks
| Risk | Impact | Mitigation |
|------|--------|------------|
| Timeline slip | Medium | Buffer, weekly reviews, scope adjustment |
| Resource constraints | Low | Early identification, backup resources |

## Comparison: Traditional vs Code Execution

### Traditional Approach

```
User: "Find high-value Salesforce accounts and summarize"

1. Load all Salesforce tool definitions → 10K tokens
2. Agent calls search_salesforce
- Query: 200 tokens
- Results: 50K rows → 8K tokens
3. Agent calls filter_records
- Query: 200 tokens
- Results: 500 rows → 5K tokens
4. Agent calls create_summary
- Query: 200 tokens
- Summary: 10K tokens

Total: ~40K tokens
Time: ~8 seconds (multiple round-trips)
```

### Code Execution Approach

```
User: "Find high-value Salesforce accounts and summarize"

1. Agent generates code → 1K tokens
```typescript
import { salesforce } from 'mcp-servers';

async function analyze() {
const all = await salesforce.search({ query: "active accounts" });
const filtered = all.filter(a => a.revenue > 1000000);
return {
count: filtered.length,
top: filtered[0]
};
}
```

2. Code executes in VM (all processing internal)
3. Final result returned → 500 tokens

Total: ~2K tokens
Time: ~2 seconds (single execution)
```

**Improvement: 95% token reduction, 75% faster**

## Next Steps

### 1. Review Phase (Week 0)
- [ ] Review all documentation
- [ ] Approve implementation plan
- [ ] Allocate team resources
- [ ] Set up project tracking

### 2. Kickoff (Week 1)
- [ ] Team onboarding
- [ ] Environment setup
- [ ] Create `terraphim_mcp_codegen` crate
- [ ] Start TypeScript wrapper generation

### 3. Ongoing
- [ ] Weekly progress reviews
- [ ] Daily standups
- [ ] Continuous integration
- [ ] Metrics tracking

### 4. Launch (Week 12)
- [ ] Production deployment
- [ ] Monitoring active
- [ ] Documentation published
- [ ] Success celebration! 🎉

## Questions?

Contact the project team or refer to:
- [Technical Specification](./CODE_EXECUTION_WITH_MCP_SPEC.md) for architecture details
- [Gap Analysis](./CODE_EXECUTION_MCP_GAP_ANALYSIS.md) for capability assessment
- [Implementation Plan](./CODE_EXECUTION_MCP_IMPLEMENTATION_PLAN.md) for detailed tasks

---

**Ready to implement?** Start with Phase 1, Week 1: Creating the MCP code API layer.
Loading
Loading